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a b s t r a c t

This paper addresses the problem of bearing-based network localization, which aims to localize all the
nodes in a static network given the locations of a subset of nodes termed anchors and inter-node bearings
measured in a common reference frame. The contributions of the paper are twofold. Firstly, we propose
necessary and sufficient conditions for network localizability with both algebraic and rigidity theoretic
interpretations. Secondly,wepropose and analyze a linear distributed protocol for bearing-based network
localization. One novelty of our work is that the localizability analysis and localization protocol are
applicable to networks in arbitrary dimensional spaces.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed localization of sensor networks is a core prob-
lem in many multi-agent coordination tasks. Network localizabil-
ity and distributed protocols are two fundamental problems for any
network localization problems. Network localizability character-
izes whether or not a network can be possibly localized given
the anchor locations and inter-neighbor relative measurements.
According to the types of the relative measurements used for
localization, the existing works can be divided into three classes:
distance-based, bearing-based, and position-based. Distance-
based network localization has been studied extensively so far
(see Aspnes et al. (2006), Diao, Lin, and Fu (2014), Khan, Kar, and
Moura (2009), Mao, Fidan, and Anderson (2007) and the refer-
ences therein). The analysis of the localizability in distance-based
network localization relies heavily on the distance rigidity the-
ory. More recently, bearing-based network localization has also
attracted extensive research attention (Bishop, Anderson, Fidan,
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Pathirana, & Mao, 2009; Eren, 2007; Niculescu & Nath, 2003; Pi-
ovan, Shames, Fidan, Bullo, & Anderson, 2013; Shames, Bishop, &
Anderson, 2013; Zhong, Lin, Chen, & Xu, 2014; Zhu & Hu, 2014).
The analysis of the localizability in bearing-based network local-
ization relies on the analogous bearing rigidity theory (Bishop,
2011; Eren, 2012; Zelazo, Franchi, & Giordano, 2014; Zhao & Ze-
lazo, 2015a). Finally, position-based network localization, where
the inter-neighbor distance and local bearing measurements are
used together for network localization, has been studied in Lin, Fu,
and Diao (2015) by using a complex graph Laplacian.

Although bearing-based network localization has been studied
by many researchers, the two fundamental problems, network
localizability and distributed protocols, have not yet been fully
explored. Very recently, a necessary and sufficient condition
for network localizability was proposed in Zhu and Hu (2014,
Thm 15) based on the notion of a stiffness matrix. This condition
is applicable only to networks in two-dimensional spaces. The
existing protocols for bearing-based network localization are
also mainly applicable to networks in two-dimensional ambient
spaces (Eren, 2007; Niculescu & Nath, 2003; Piovan et al., 2013;
Shames et al., 2013; Zhong et al., 2014; Zhu & Hu, 2014). General
results of localizability or distributed protocols for bearing-based
network localization in three and higher dimensional spaces are
still lacking. The main contributions of our work are summarized
below.
(a) We formulate the problem of bearing-based network localiza-

tion in arbitrary dimensions as a linear least-squares optimiza-
tion problem. A special matrix termed the bearing Laplacian,
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which can be viewed as a matrix-weighted graph Laplacian,
emerges as a key part in the least-squares formulation.

(b) By solving the least-squares problem, we propose necessary
and sufficient conditions for network localizability with
both algebraic and rigidity theoretic interpretations. These
conditions not only provide numerical ways to examine the
localizability of a given network but also provide intuitions on
what a localizable network looks like.

(c) We then propose a distributed linear localization protocol. It is
proved that the protocol can globally localize a network if and
only if the network is localizable. The sensitivity of the protocol
to constant measurement errors is also analyzed.

The rest of the paper is organized as follows. Section 2
presents the linear least-squares formulation of the bearing-based
network localization problem. Section 3 explores the properties
of the bearing Laplacian matrix. Section 4 presents necessary and
sufficient conditions for network localizability. Section 5 proposes
and analyzes a linear distributed localization protocol. Conclusions
are drawn in Section 6.
Notations: Given Ai ∈ Rp×q for i = 1, . . . , n, denote diag(Ai) ,
blkdiag{A1, . . . , An} ∈ Rnp×nq. Let ∥ · ∥ be the Euclidian norm of a
vector or the spectral norm of a matrix, and ⊗ be the Kronecker
product. Denote Id ∈ Rd×d as the identity matrix, and 1d ,
[1, . . . , 1]T ∈ Rd. Let Null(·) and Range(·) be the null space and
range space of a matrix, respectively.

2. Bearing-based network localization

In this section, the problem of bearing-based network lo-
calization is formally stated and then formulated as a linear
least-squares problem. Central to this problem is the notion of
localizability, which is formally defined here.

2.1. Problem statement

Consider a network of n stationary nodes in Rd (n ≥ 2 and
d ≥ 2). Assume no two nodes are collocated. Let pi ∈ Rd be the
location of node i (i = 1, . . . , n). Define the edge vector and the
bearing between nodes i and j as

eij , pj − pi, gij ,
eij

∥eij∥
.

The unit vector gij represents the relative bearing of pj with respect
to pi. Note eij = −eji and gij = −gji. Suppose the locations of na
anchor nodes are already given and the locations of the remaining
nf follower nodes are to be estimated (na + nf = n). Denote
Va = {1, . . . , na}, Vf = {na + 1, . . . , n}, and V = Va ∪ Vf . Denote
pa = [pT1, . . . , p

T
na ]

T
∈ Rdna , pf = [pTna+1, . . . , p

T
n]

T
∈ Rdnf , and

p = [pTa, p
T
f ]

T
∈ Rdn.

Suppose each node has the bearing-only sensing capabilities.
The sensing topology of the network defines a graph G = (V, E)
where E ⊂ V ×V . Denote (i, j) as the directed edge with node i as
the tail and node j as the head. The directed edge (i, j) ∈ E indicates
that node i can ‘‘see’’ node j; that is node i can measure the relative
bearings gij of node j. Node j is called the neighbor of node i if
(i, j) ∈ E , andNi , {j ∈ V|(i, j) ∈ E} is the neighborhood of node i.
We assume a global orientation that can be sensed by all the nodes,
and thus all measured bearings can be expressed with respect to
this common orientation. The global orientation means a common
north for the two-dimensional space, and a common north–east-
down reference for the three-dimensional space. Finally, let G(p)
denote the network that is the graph G with each vertex i ∈ V
mapped to the point pi.

The problem of bearing-based network localization is formally
stated below.
a b c

Fig. 1. An illustration of the notion of localizability. Suppose the network in (a) is
the true network. The networks in (a) and (b) satisfy the nonlinear equations in (1).
The networks in (a), (b), and (c) satisfy the linear equations in (2).

Problem 1 (Bearing-Based Network Localization). Consider a net-
work G(p) in Rd, the bearing-based network localization problem
is to determine the locations of the follower nodes, {pi}i∈Vf , given
the inter-neighbor bearings, {gij}(i,j)∈E , and the locations of the an-
chor nodes, {pi}i∈Va . Mathematically, the problem is to retrieve the
true network location p by solving the system of nonlinear equa-
tions,

p̂j − p̂i
∥p̂j − p̂i∥

= gij, ∀(i, j) ∈ E,

p̂i = pi, ∀i ∈ Va,

(1)

where p̂i is the estimated location of node i.

The true network location is always a solution to the nonlin-
ear equations in (1), but the nonlinear equations may admit many
other solutions that do not correspond to the true network loca-
tion. Thus we need to study when the true network location is the
unique solution to (1), which motivates the following notion.

Definition 1 (Bearing-Based Network Localizability). A network
G(p) is called bearing-based localizable if the true network location
p is the unique solution to (1).

Localizability is a fundamental property of bearing-based
networks. A network must be localizable in order to be localized
with either distributed or centralized protocols. The notion of
localizability is illustrated by an example in Fig. 1. In this example,
the network in Fig. 1(a) is the true network. The network in Fig. 1(b)
has the same bearings and anchor locations as the true network.
As a result, both of the networks in Fig. 1(a)–(b) are solutions to (1)
and hence the networks are not localizable by Definition 1.

For the sake of simplicity, we assume that the graph G is
undirected, which means (i, j) ∈ E ⇔ (j, i) ∈ E . If the graph is
directed, suppose (i, j) ∈ E but (j, i) ∉ E . We can always add the
edge (j, i) into E to convert the directed graph to an undirected
one. The directed edges (i, j) and (j, i) imply two equations (p̂j −

p̂i)/∥p̂j − p̂i∥ = gij and (p̂i − p̂j)/∥p̂i − p̂j∥ = gji, respectively. The
two equations are equivalent because gji = −gij. As a result, adding
the edge (j, i) does not affect the solutions to (1).

2.2. Reformulation as a least-squares problem

In order to solve the nonlinear equations in (1), we derive a
companion system of linear equations. In this direction, we first
introduce a useful orthogonal projection operator. For any nonzero
vector x ∈ Rd (d ≥ 2), define the orthogonal projection operator
P : Rd

→ Rd×d as

P(x) , Id −
x

∥x∥
xT

∥x∥
.

For notational simplicity, denote Px , P(x). The matrix Px
geometrically projects any vector onto the orthogonal compliment
of x. It can be easily verified that PT

x = Px, P2
x = Px, Null(Px) =

span {x}, and the eigenvalues of Px are {0, 1(d−1)
}.

Consider now the projectionmatrix, Pgij = Id − gijgT
ij , associated

with the bearing gij. By multiplying Pgij on both sides of the first
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equation in (1), the nonlinear algebraic problem (1) is converted to
a system of linear equations,
Pgij(p̂j − p̂i) = 0, ∀(i, j) ∈ E,

p̂i = pi, ∀i ∈ Va.
(2)

The linear equations in (2) are not equivalent to the nonlinear
equations in (1) in general. But we next show that the two sets of
equations are equivalent when the true network localization is the
unique solution.

Lemma 1. Let X1 andX2 denote the set of all solutions satisfying (1)
and (2), respectively. Then
(a) {p} ⊆ X1 ⊆ X2;
(b) {p} = X1 if and only if {p} = X2.

Proof. (a) Since the true network location p is always a solution to
(1) and (2), we know X1 and X2 are nonempty and {p} ⊆ X1 and
{p} ⊆ X2. Since (2) is obtained by multiplying (1) by Pgij , we know
any solution to (1) is also a solution to (2), showing X1 ⊆ X2.
(b) (Sufficiency) Suppose {p} = X2. It then follows from {p} ⊆

X1 ⊆ X2 that {p} = X1. (Necessity) Suppose {p} = X1. We next
prove {p} = X2 by contradiction. Assume p′

∈ X2 and p′
≠ p. Let

δp , p′
− p and define

p′′ , p + kδp, k ∈ R. (3)

We next show that p′′
∈ X1 when |k| is sufficiently small, leading

to a contradiction. Since p, p′
∈ X2, we know p′′

∈ X2 for all
k ∈ R by (3). As a result, for any k ∈ R and (i, j) ∈ E , we have
Pgij(p

′′

j −p′′

i ) = 0which implies either (p′′

j −p′′

i )/∥p
′′

j −p′′

i ∥ = gij or
(p′′

j −p′′

i )/∥p
′′

j −p′′

i ∥ = −gij. Since p′′

j −p′′

i = (pj−pi)+k(δpj−δpi)
according to (3), it is obvious that when |k| is sufficiently small,
the entries of p′′

j − p′′

i have the same signs as those of pj − pi, and
consequently (p′′

j −p′′

i )/∥p
′′

j −p′′

i ∥ = (pj −pi)/∥pj −pi∥ = gij. Note
that when any entry of pj − pi is zero, the corresponding entry of
δpj − δpi is also zero because δpi − δpj is parallel to pj − pi. To
conclude, p′′ is another solution other than p satisfying (1), which
is a contradiction. �

Lemma 1(b) indicates that the true network location p is the
unique solution to (1) if and only if p is the unique solution to (2).
Thus we can study the localizability by analyzing the linear system
(2). The linear system of equations in (2) can be rewritten as the
following linear least-squares problem,

minimize
p̂∈Rdn

J(p̂) =
1
2


i∈V


j∈Ni

∥Pgij(p̂i − p̂j)∥2, (4)

subject to p̂i = pi, i ∈ Va.

Since any minimizer with the objective function as zero is the
solution to (2), we now successfully formulate the localizability
problem as the above least-squares problem. The rest of the
paper is dedicated to studying two properties of the least-squares
problem. The first is to determine when the true location p is
the unique global minimizer of (4) (i.e., when the network is
localizable), and the second is how to obtain p in a distributed
manner (i.e., what the distributed localization protocol is).

3. The bearing Laplacian matrix

In this section, we show that a new important matrix, termed
bearing Laplacian, emerges in the least-squares formulation. The
useful properties of the bearing Laplacian that will be used
throughout the paper are explored.

Since the underlying graph G is undirected, the objective
function in (4) can be expressed in a quadratic form,

J(p̂) = p̂TB(G(p))p̂,
where B(G(p)) ∈ Rdn×dn and its ijth subblock matrix is

[B(G(p))]ij =


0d×d, i ≠ j, (i, j) ∉ E,

−Pgij , i ≠ j, (i, j) ∈ E,
k∈Ni

Pgik , i = j, i ∈ V.

For notational simplicity, we write B(G(p)) as B in the sequel.
The matrix B has a structure reminiscent of the weighted graph
Laplacian matrix. Since B indicates not only the topology of the
network but also the inter-neighbor bearings, it is referred to as
bearing Laplacian in this paper.

The bearing Laplacian has an intimate connection to the
bearing rigidity properties of the network. Preliminaries to the
bearing rigidity theory, originally proposed in Zhao and Zelazo
(2015a), are given in Appendix A. Here we would like to highlight
two important notions from this theory. The first is the notion
of infinitesimal bearing motions. Loosely speaking, infinitesimal
bearing motions are motions of the nodes that preserve inter-
neighbor bearings. For example, for the network in Fig. 1(a),
the bearings can be preserved when the nodes 3 and 4 move
in the horizontal direction to the right. A network always has
two kinds of trivial infinitesimal bearing motions—they are the
translational and scalingmotions of the entire network. A network
is infinitesimally bearing rigid if all its infinitesimal bearingmotions
are trivial. One important property of an infinitesimally bearing
rigid network is that its shape can be uniquely determined by the
inter-neighbor bearings.

We next give the basic properties of the bearing Laplacian
matrix. We also show that the bearing Laplacian matrix is a
powerful tool for characterizing the bearing rigidity of a network.

Lemma 2. For a network G(p) with undirected graph G, the bearing
Laplacian B satisfies the following:

(a) B is symmetric positive semi-definite;
(b) Rank(B) ≤ dn − d − 1 and Null(B) ⊇ span {1 ⊗ Id, p};
(c) Rank(B) = dn − d − 1 and Null(B) = span {1 ⊗ Id, p} if and

only if G(p) is infinitesimally bearing rigid.

Proof. Assign an arbitrary orientation to each undirected edge and
label the edge vectors and bearings for the directed edges as {ek}mk=1
and {gk}mk=1, respectively. Then the bearing Laplacian B can be
expressed as B = H̄Tdiag(Pgk)H̄ where H̄ = H ⊗ Id and H is the
incidencematrix of the graph.1 It further follows from Pgk = PT

gkPgk
that

B = H̄Tdiag(PT
gk)  

RT

diag(Pgk)H̄  
R

= RTR.

Note R = diag (∥ek∥Id) RB where RB is the bearing rigidity matrix
(see Lemma 7 in Appendix A). As a result, the matrix R, and hence
B, have exactly the same rank and null space as RB. Then the results
in (b) and (c) follow immediately from Lemma 7 and Theorem 7 as
given in Appendix A. �

Since the nodes in the network are partitioned into anchors and
followers, it will be useful to partition the corresponding bearing
Laplacian as

B =


Baa Baf
Bfa Bff


,

where Baa ∈ Rdna×dna , Baf = BT
fa ∈ Rdna×dnf , and Bff ∈ Rdnf ×dnf .

1 The incidencematrixH ∈ Rm×n of an oriented graph is the {0, ±1}-matrix with
[H]ki = 1 if vertex i is the head of edge k, [H]ki = −1 if it is the tail, and 0 otherwise.
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Lemma 3. For any network G(p) with undirected graph G, the
subblock matrix Bff is symmetric positive semi-definite and satisfies
Bff pf + Bfapa = 0.

Proof. For any nonzero x ∈ Rdnf , denote x̄ = [0, xT]T ∈ Rdn. Since
B ≥ 0, we have xTBff x = x̄TBx̄ ≥ 0. As a result Bff is positive
semi-definite. Since p ∈ Null(B) as suggested by Lemma 2, we
have Bp = 0 which further implies Bfapa + Bff pf = 0. �

4. Analysis of network localizability

In this section, we analyze the localizability of networks in
arbitrary dimensions. We first prove two necessary and sufficient
conditions for network localizability from algebraic and rigidity
perspectives, respectively.We then presentmore necessary and/or
sufficient conditions which can give more intuition on what
localizable networks look like. First of all, we derive the optimality
condition for the least-squares problem (4).

Lemma 4. For the least-squares problem (4), anyminimizer p̂∗

f is also
a global minimizer and satisfies

Bff p̂∗

f + Bfapa = 0.

Proof. By substituting p̂a = pa into the objective function J(p̂) =

p̂TBp̂, the constrained optimization problem (4) can be converted
to the unconstrained problem

min
p̂f ∈Rdnf

J̃(p̂f ) = p̂Tf Bff p̂f + 2pTaBaf p̂f + pTaBaapa. (5)

Any minimizer must satisfy ∇p̂f J̃(p̂f ) = Bff p̂f + Bfapa = 0. Now
suppose p̂∗

f is a minimizer and satisfies Bff p̂∗

f + Bfapa = 0. By
comparing with Bff pf + Bfapa = 0 as shown in Lemma 3, we
know p̂∗

f = pf + x where x ∈ Null(Bff ). Let p̂∗
= [pTa, (p̂

∗

f )
T
]
T

and x̄ = [0, xT]T ∈ Rdn. Since p̂∗

f = pf + x and Bp = 0, we have
J(p̂∗) = (p̂∗)TBp̂∗

= (p+ x̄)TB(p+ x̄) = x̄TBx̄ = xTBff x = 0. As a
result, the objective function equals zero at every minimizer. �

The linear equations in (2) hold if and only if the objective
function in the least-squares problem (4) is minimized to zero;
this is a direct consequence of the first-order optimality conditions
associated with (4). Thus the equivalence between (2) and (4) is
formally established. We are now ready to present the necessary
and sufficient condition for localizability.

Theorem 1 (Algebraic Condition for Localizability). A network G(p)
is localizable if and only if the matrix Bff is nonsingular. When
the network is localizable, the true locations of the followers can be
calculated by pf = −B−1

ff Bfapa.

Proof. By Lemma 4, a network is localizable if and only if the true
network location p is the unique minimizer of the least-squares
problem (4). Since any minimizer must satisfy Bff p̂∗

f + Bfapa = 0,
it is obvious that the minimizer is unique if and only if Bff is
nonsingular. When Bff is nonsingular, we have p̂∗

f = −B−1
ff Bfapa,

whose value equals the true location pf according to Lemma 3. �

Theorem 1 establishes the equivalence between the localizabil-
ity and the nonsingularity of Bff . A question that immediately fol-
lows Theorem1 iswhat kind of networks have nonsingularBff .We
next propose a necessary and sufficient condition from the bear-
ing rigidity point of view. This rigidity condition is mathematically
equivalent to the algebraic condition, but it givesmore intuition on
what localizable networks look like.
Theorem 2 (Rigidity Condition for Localizability). A network G(p) is
localizable if and only if every infinitesimal bearing motion involves at
least one anchor; that is, for any nonzero infinitesimal bearing motion
δp = [δpTa, δp

T
f ]

T
∈ Null(B), the motion δpa corresponding to the

anchors must be nonzero.

Proof. Weonly need to show thatBff is singular if and only if there
exists nonzero δp ∈ Null(B)with δpa = 0. (Necessity) SupposeBff

is singular. Then there exists nonzero x ∈ Rdnf such that Bff x = 0.
Let δp = [0, xT]T ∈ Rdn. Then δpTBδp = xTBff x = 0. Hence
δp ∈ Null(B) and δpa = 0. (Sufficiency) Suppose there exists
δp ∈ Null(B) satisfying δpa = 0 and δpf ≠ 0. Then δpTf Bff δpf =

δpTBδp = 0, which implies that Bff is singular. �

The intuition behind Theorem 2 is as follows. Any infinitesimal
bearing motion (i.e., bearing-preserved motion) would imply
multiple false networks that have exactly the same bearings as the
true network. Only if the infinitesimal bearing motion involves at
least one anchor, the false networks can be ruled out as solutions
to (1) since they do not satisfy the anchor constraints; otherwise,
the false networks cannot be distinguished from the true network.

Examples are given in Figs. 2 and 3 to illustrate Theorem 2.
Fig. 2 shows examples of non-localizable networks. These networks
are not localizable because each of them has infinitesimal bearing
motions that only involve the followers (see those marked by
red arrows). Fig. 3 shows examples of localizable networks. The
networks in Fig. 3(a)–(f) are obtained by modifying the networks
in Fig. 2, which suggests that a non-localizable network can be
made localizable by adding extra edges or selecting different
anchors. It is worth noting that the networks in Fig. 3(c)–(g) are
not infinitesimally bearing rigid yet they are localizable. As a
result, infinitesimal bearing rigidity is not necessary to guarantee
localizability.

Up to this point,wehavepresented twonecessary and sufficient
localizability conditions. We next utilize the two conditions
to examine some specific problems more closely. The first is
to examine how many anchors are required to ensure the
localizability of a network.

Corollary 1. If a network G(p) is localizable, then

na ≥
dim (Null(B))

d
> 1.

Proof. Let k = dim (Null(B)) and N ∈ Rdn×k be a basis matrix
of Null(B) which means Range(N) = Null(B). Then any nonzero
δp ∈ Null(B) can be expressed as δp = Nx, where x ∈ Rk, x ≠ 0.
PartitionN and expressNx as δp = Nx =


Nax
Nf x


, whereNa ∈ Rdna×k.

According to Theorem 2, the network is localizable if and only
if Nax ≠ 0, ∀x ∈ Rk, x ≠ 0. As a result, the matrix Na must
have full column rank, which requires Na to be a tall matrix with
dna ≥ k = dim(Null(B)). Since dim(Null(B)) ≥ d + 1 according
to Lemma 2, we have na ≥ dim(Null(B))/d ≥ (d + 1)/d > 1. �

A simple but important fact suggested by Corollary 1 is that
any localizable network must have at least two anchors. Similar
conclusions have already been obtained in the existing studies
for networks in the two-dimensional space (Eren, 2007; Piovan
et al., 2013; Shames et al., 2013; Zhu & Hu, 2014). Another
important fact, which is suggested by Corollary 1 but has not
been reported in the literature, is that more anchors are required
to ensure the localizability when dim(Null(B)) increases. The
quantity dim(Null(B)) can be viewed as a measure of the ‘‘degree
of bearing rigidity’’ as dim(Null(B)) reaches the smallest value
d + 1 when the network is infinitesimally bearing rigid as shown
in Lemma 2. As a result, the intuition behind the second fact is that
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a

b c d e f

Fig. 2. Examples of non-localizable networks. The networks are not localizable because they have infinitesimal bearing motions that only correspond to the followers (see,
for example, the red arrows). The networks in (e) and (f) are three-dimensional.
a b c d e f g

Fig. 3. Examples of localizable networks. The networks in (e) and (f) are three-dimensional.
more anchors are required to ensure the localizability when the
network is ‘‘less’’ bearing rigid (i.e., dim(Null(B)) is large).

We next present another three localizability conditions, two of
which are sufficient and the other is both necessary and sufficient.
These conditions are important because they indicate the explicit
connection between the localizability and infinitesimal bearing
rigidity. Before presenting the conditions, we need to first define
the notion of augmented network.

Definition 2 (Augmented Network). Given a network G(p) with
G = (V, E), denote by Ḡ(p) an augmented network with Ḡ =

(V, Ē) where Ē = E ∪ {(i, j) : i, j ∈ Va}.

The augmented network Ḡ(p) is obtained from G(p) by
connecting every pair of anchors. If the anchors are already
connected inG(p), then Ḡ(p) is the same asG(p). It should be noted
that adding or deleting the edge between any pair of anchors only
changes Baa but not Bff . As a result, G(p) and Ḡ(p) have exactly
the same Bff and hence they are localizable or nonlocalizable
simultaneously. The next two sufficient conditions connect the
notions of localizability and infinitesimal bearing rigidity.

Corollary 2. When na ≥ 2, if Ḡ(p) is infinitesimally bearing rigid,
then G(p) is localizable.

Proof. We will first use Theorem 2 to prove the localizability of
Ḡ(p). Then the localizability of G(p) immediately follows because
G(p) and Ḡ(p) have the same localizability. Let B̄ be the bearing
Laplacian for Ḡ(p). Since Ḡ(p) is infinitesimally bearing rigid, we
have Null(B̄) = span {1 ⊗ Id, p} by Lemma 2. As a result, any
infinitesimal bearing motion δp ∈ Null(B̄) can be expressed as a
linear combination of 1⊗ Id and p. Since no two anchors collocate,
there does not exist a linear combination of 1 ⊗ Id and p leading
to δpa = 0 if na ≥ 2. Then Ḡ(p) is localizable according to
Theorem 2. �

Corollary 3. When na ≥ 2, if G(p) is infinitesimally bearing rigid,
then G(p) is localizable.

Proof. Similar to Corollary 2. �

The intuition behind Corollary 3 is as follows. If a network is
infinitesimally bearing rigid, then it can be uniquely determined
up to a translation and a scaling factor by the bearings. Since
the translational and scaling ambiguity can be further eliminated
by the anchor constraints, the entire network can be fully
determined and hence localizable. It is notable that Corollary 3 is
more restrictive than Corollary 2 because it requires G(p) to be
infinitesimally bearing rigid whereas Corollary 2 merely requires
Ḡ(p) to be. To illustrate, the networks as shown in Fig. 3(c)–(f)
are localizable. For each of them, the augmented network Ḡ(p) is
infinitesimally bearing rigid but G(p) is not. Finally, Corollary 2 can
be viewed as a generalization of the result in Zhu and Hu (2014,
Cor 10) which is applicable only to two-dimensional cases.

As suggested by Corollary 2, the condition of the infinitesimal
bearing rigidity of Ḡ(p) is sufficient to ensure the localizability of
G(p). An important yet unexplored problem is whether or not the
condition is also necessary. In the case of na ≥ 3, the condition is
sufficient but not necessary. A counterexample is given in Fig. 3(g),
where G(p) is localizable but Ḡ(p) is not infinitesimally bearing
rigid since the three anchors are collinear. However, in the case
of na = 2, we can prove that the condition is both necessary and
sufficient.

Theorem 3. When na = 2, a network G(p) is localizable if and only
if the augmented network Ḡ(p) is infinitesimal bearing rigid.

Proof. The sufficiency has already been proved in Corollary 2.
We next prove the necessity by contradiction. Assume G(p) is
localizable but Ḡ(p) is not infinitesimal bearing rigid. Then Ḡ(p)
has a nontrivial infinitesimal bearing motion δp which is not in
span {1 ⊗ Id, p}. Write δp = [δpT1, δp

T
2, (∗)]T, where δp1, δp2 ∈ Rd

corresponds to the two anchors. Because the infinitesimal motion
δp preserves all the bearings including the bearing between p1 and
p2, we know that the vector δp1 − δp2 is parallel to p1 − p2. As
a result, there exists a nonzero scalar k such that δp1 − δp2 =

k(p1 − p2). Construct

δp′ , δp + 1n ⊗ (kp2 − δp2) − kp

=


δp1
δp2
(∗)


+

kp2 − δp2
kp2 − δp2

(∗)


−

kp1
kp2
(∗)


=

 0
0

(∗)


.

Since the first two entries of δp′ are zero, we know δp′ is
an infinitesimal motion that only involves the followers. Thus,
the network is not localizable by Theorem 2, which is a
contradiction. �

5. Distributed network localization protocols

In this section, we propose and analyze a linear distributed
protocol for bearing-based network localization in arbitrary
dimensions.

The global minimizer of the unconstrained optimization
problem (5) can be obtained by the gradient decent protocol

˙̂pf (t) = −∇p̂f J̃(p̂f ) = −Bff p̂f (t) − Bfapa, (6)

whose elementwise expression is

˙̂pi(t) = −


j∈Ni

Pgij(p̂i(t) − p̂j(t)), i ∈ Vf (7)
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Fig. 4. The geometric interpretation of protocol (7).

where Pgij = Id − gijgT
ij . Note the neighbor of the follower i can

be either a follower or an anchor. Several remarks for protocol
(7) are given below. First, the protocol is distributed because the
localization of pi only requires {gij}j∈Ni and {p̂j}j∈Ni . In practical
implementation, the bearings {gij}j∈Ni can be measured by a
bearing-only sensor such as a camera and the estimates {p̂j}j∈Ni can
be transmitted from the neighbors viawireless communication. All
the bearingsmust bemeasured in a global reference frame. Second,
the protocol has a clear geometric interpretation as shown in Fig. 4.
The term−Pgij(p̂i(t)−p̂j(t)) is the orthogonal projection of (p̂j(t)−
p̂i(t)) onto the orthogonal compliment of gij, and hence it acts to
steer the estimate p̂i(t) to align with the bearing measurement gij.
Third, protocol (7) can be viewed as an extension of the protocol
proposed in Zhu and Hu (2014), which is applicable to networks
in the two-dimensional space. Finally, those who are familiar with
consensus problems might have noticed that protocol (6) has a
similar expression as the well-known consensus protocol (Olfati-
Saber & Murray, 2004). The difference is that in the consensus
protocol, the weight for each edge is a positive scalar whereas in
the localization protocol the weight for each edge is a positive
semi-definite orthogonal projection matrix.

The convergence of the protocol is characterized as below.

Theorem 4. The distributed protocol (7) can globally localize the
network G(p) if and only if the network is localizable.

Proof. When Bff is nonsingular (i.e., the network is localizable),
the matrix −Bff is Hurwitz. As a result, the linear time-invariant
system (6) is stable and the state converges to the steady state
value −B−1

ff Bfapa which is equal to the real follower location pf
according to Lemma 3.WhenBff is singular (i.e., the network is not
localizable), the final estimatewould dependon the initial estimate
of the network location. �

5.1. Sensitivity analysis

Since the bearing measurements may be corrupted by errors
in practice, it is meaningful to study the impact of constant
measurement errors on the localization protocol (7). Denote the
unit vector g̃ij ∈ Rd as the measurement of gij. In the presence of
bearingmeasurement errors, the localization protocol (6) becomes

˙̂pf (t) = −B̃ff p̂f (t) − B̃fapa, (8)

where B̃ff and B̃fa are obtained from Bff and Bfa by replacing gij
with g̃ij, respectively. The matrix B̃ff may not be symmetric since
g̃ij ≠ −g̃ji in general.

We next analyze two problems regarding (8). The first is when
B̃ff is positive stable (i.e., all its eigenvalues have positive real
parts) such that (8) is globally stable. If B̃ff is positive stable, the
final estimate given by (8) is

p̂∗

f = −B̃−1
ff B̃fapa. (9)

The second problem is how large the localization error ∥p̂∗

f − pf ∥
is. To solve the two problems, define

∆Bff , B̃ff − Bff , ∆Bfa , B̃fa − Bfa,

as the perturbations of Bff and Bfa caused by the bearing mea-
surement errors. Let θij ∈ [0, π] be the angle between g̃ij and gij;
that is gT
ij g̃ij = cos θij. The angle θij represents the inconsistency

between g̃ij and gij. This representation is valid for arbitrary dimen-
sions. Note θij ≠ θji in general. Define the total bearing measure-
ment error for the followers as

ϵ , 2

i∈Vf


j∈Ni

sin θij.

We next give lemmas to characterize the relationship between ϵ
and ∆Bff , ∆Bfa.

Lemma 5. Denote by θ ∈ [0, π] the angle between any two nonzero
vectors x, y ∈ Rd (i.e., xTy = ∥x∥∥y∥ cos θ ). Then ∥Px −Py∥ = sin θ.

Proof. See Appendix B. �

Lemma 6. For a network G(p) with arbitrary bearing measurements
{g̃ij}(i,j)∈E , it always holds that ∥∆Bff ∥ ≤ ϵ and ∥∆Bfa∥ ≤ ϵ/2.
Proof. Denote ∆Pgij , Pg̃ij − Pgij , ∀(i, j) ∈ E . It then follows from
Lemma 5 that ∥∆Pgij∥ = sin θij. Note [∆Bff ]ii =


j∈Ni

∆Pgij for
i ∈ Vf ; [∆Bff ]ij = −∆Pgij for i ∈ Vf and j ∈ Ni ∩ Vf ; and [∆Bff ]ij

= 0 otherwise. Thenwehave ∥∆Bff ∥ ≤


i∈Vf


j∈Ni∩Vf

∥∆Pgij∥+
i∈Vf


j∈Ni

∆Pgij
 ≤


i∈Vf


j∈Ni

∥∆Pgij∥ +


i∈Vf


j∈Ni

∥∆Pgij∥ ≤ 2


i∈Vf


j∈Ni

∥∆Pgij∥ = 2


i∈Vf


j∈Ni

sin θij =

ϵ. Similarly, we have ∥∆Bfa∥ ≤


i∈Vf


j∈Ni∩Va

∥∆Pgij∥ ≤
i∈Vf


j∈Ni

∥∆Pgij∥ =


i∈Vf


j∈Ni

sin θij = ϵ/2. �

We now give a upper bound for the total bearing error ϵ to
ensure the positive stability of B̃ff .

Theorem 5. Given a localizable network with Bff nonsingular, the
matrix B̃ff is positive stable if the total bearing error ϵ satisfies

ϵ < λmin(Bff ), (10)

where λmin(Bff ) is the minimum eigenvalue of Bff .
Proof. Since ∥∆Bff ∥ < ϵ by Lemma 6, if (10) holds, we have
∥∆Bff ∥ < λmin(Bff ) = 1/∥B−1

ff ∥, which further implies
∥B−1

ff ∆Bff ∥ ≤ ∥B−1
ff ∥∥∆Bff ∥ < 1. Thus the spectral radius

ρ(B−1
ff ∆Bff ) < 1 and hence the matrix (I + B−1

ff ∆Bff ) is nonsin-
gular. As a result, B̃ff = Bff + ∆Bff = Bff (I + B−1

ff ∆Bff ) is non-
singular. Since B̃ff is obtained by perturbing Bff and Bff is positive
stable, the nonsingularity of B̃ff implies the positive stability. �

Theorem 5 suggests that a large λmin(Bff ) would give the
network a large tolerance to bearing measurement errors.

We now study the localization error ∥p̂∗

f − pf ∥. An intuitive
conclusion that can be immediately drawn from (9) and matrix
perturbation theory is that the localization error would be
sufficiently small when the bearing measurement errors are
sufficiently small. We next give a specific upper bound on the
localization error.

Theorem 6. The estimate p̂∗

f = −B̃−1
ff B̃fapa given in (9) satisfies

∥p̂∗

f − pf ∥ ≤
ϵ

λmin(Bff )−ϵ

 1
2∥pa∥ + ∥pf ∥


.

Proof. See Appendix C. �
In the last, we briefly discuss the impact of measurement errors
in the anchors’ locations. Suppose the bearing measurements are
accurate in this case. Then the final estimate given by protocol (7)
becomes p̂∗

f = −B−1
ff Bfa(pa + ∆pa), where ∆pa ∈ Rdna denotes

the anchor location error. Then the localization error is given by
∆p̂f , p̂∗

f − pf = −B−1
ff Bfa∆pa, which indicates that the anchor

location errors propagate to the final localization error via a linear
transformation. It is straightforward to show that a translational or
scaling error in the anchor measurements would cause the same
translational or scaling error in the localization of followers.
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(a) Initial estimate. (b)


i∈Vf
∥p̂i(t) − pi∥. (c) Final estimate. (d)


i∈Vf

∥p̂i(t) − pi∥. (e) Final estimate.

Fig. 5. Simulation examples for the localization protocol (7). The bearingmeasurements are accurate for the example in (b)–(c), and inaccurate for the one in (d)–(e). The blue
squares represent the anchors. The blue hollow dots and the green solid dots represent the true and estimated locations of the followers, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
5.2. Simulation examples

Two simulation examples are shown in Fig. 5 to demonstrate
the localization protocol (7). The network to be localized is a
three-dimensional cubic network, which contains eight nodes
and two of them are anchors and the other six are followers.
The initial estimate, which is randomly generated, is given in
Fig. 5(a). For the first example in Fig. 5(b)–(c), the bearing
measurements are accurate and it can be seen that the estimate
of the network location converges to the true value. For the second
example in Fig. 5(d)–(e), the bearingmeasurements are inaccurate.
Specifically, the total bearing error is ϵ = 2.77 and the final
localization error equals 7.25m. By comparing the two examples, it
can be seen that when the bearings have measurement errors, the
finally localized network would have localization errors. However,
the final localized network can still be sufficiently close to the true
network if the bearing errors are sufficiently small. In addition,
for the second example, we have λmin = 0.59 < ϵ. Although
the condition in Theorem 5 is not satisfied, the matrix B̃ff is still
positive stable which indicates that the condition in Theorem 5
may be conservative.

6. Conclusions

This paper addressed the localizability conditions and localiza-
tion protocols for bearing-based network localization in arbitrary
dimensions. The results presented in this paper not only can be ap-
plied to solve the problem of sensor network localization but also
provide a theoretical foundation for bearing-based formation con-
trol (Zhao & Zelazo, 2015b,c,d,e). In this paper, we assumed that
the underlying graph is undirected. As we have explained, the lo-
calizability analysis is independent to whether or not the sensing
graph is undirected because any directed graph can be converted
to an undirected one without affecting the localizability analysis.
However, the convergence analysis of the proposed localization
protocol relies on the assumption of undirected graphs. For di-
rected graphs, a new notion termed bearing persistence emerges
and makes the problem more complicated to analyze as observed
in Zhao and Zelazo (2015e). Distributed localization with directed
interaction topologies is therefore a direction for future work.

Appendix A. Preliminaries to bearing rigidity theory

For a network G(p), consider an oriented graph and express
the edge vector and the bearing for the kth directed edge in the
oriented graph, respectively, as ek and gk , ek/∥ek∥ for k ∈

{1, . . . ,m}. Define the bearing function FB : Rdn
→ Rdm as

FB(p) , [gT
1 , . . . , g

T
m]

T. The bearing rigidity matrix is defined as the
Jacobian of the bearing function, RB(p) , ∂FB(p)/∂p ∈ Rdm×dn.
Two important properties of the bearing rigidity matrix are given
as below.
Lemma 7 (Zhao & Zelazo, 2015a). For any network G(p), the bearing
rigidity matrix satisfies RB = diag


Pgk/∥ek∥


H̄, Rank(RB) ≤ dn −

d − 1 and span {1 ⊗ Id, p} ⊆ Null(RB).

Let δp be a variation of p. If RB(p)δp = 0, then δp is called
an infinitesimal bearing motion of G(p). A network always has
two kinds of trivial infinitesimal bearing motions: translation and
scaling of the entire network.

Definition 3 (Infinitesimal Bearing Rigidity). A network is infinites-
imally bearing rigid if all the infinitesimal bearing motions are triv-
ial.

Thenecessary and sufficient conditions for infinitesimal bearing
rigidity are summarized as below.

Theorem 7 (Zhao & Zelazo, 2015a). For any network G(p), the
following statements are equivalent:

(a) G(p) is infinitesimally bearing rigid;
(b) G(p) can be uniquely determined up to a translation and a scaling

factor by the inter-neighbor bearings;
(c) Rank(RB) = dn − d − 1;
(d) Null(RB) = span {1 ⊗ Id, p}.

Appendix B. Proof of Lemma 5

Proof. Here we only prove the case of d = 3. Without loss of
generality, assume x and y are two unit vectors satisfying ∥x∥ =

∥y∥ = 1. Then, we have Px = Id − xxT, Py = Id − yyT, and hence
∥Px −Py∥ = ∥xxT −yyT∥. There always exists an orthogonal matrix
U ∈ R3×3 such that the two vectors x and y can be orthogonally
transformed to Ux = [1, 0, , 0]T and Uy = [cos θ, sin θ, 0]T. Since
the spectral norm is invariant to orthogonal matrices, we have

∥Px − Py∥ = ∥U(xxT − yyT)UT
∥

=


1 0
0 0


−


cos2 θ cos θ sin θ

sin θ cos θ sin2 θ


= sin θ∥Q∥,

where Q =


sin θ − cos θ

− cos θ − sin θ


. It is easy to see Q TQ = I2 and

hence Q is an orthogonal matrix. Then, ∥Px − Py∥ = sin θ∥Q∥ =

sin θ∥I∥ = sin θ . �

Appendix C. Proof of Theorem 6

Proof. Recall pf = −B−1
ff Bfapa and note p̂∗

f = −(Bff +

∆Bff )
−1(Bfa +∆Bfa)pa. By Henderson and Searle (1981, Eq. (25)),

we have (Bff +∆Bff )
−1

= B−1
ff −B−1

ff ∆Bff (I+B−1
ff ∆Bff )

−1B−1
ff ,

substituting into p̂∗

f gives p̂∗

f = −B−1
ff Bfapa − B−1

ff ∆Bfapa +

B−1
ff ∆Bff (I+B−1

ff ∆Bff )
−1B−1

ff ∆Bfapa+B−1
ff ∆Bff (I+B−1

ff ∆Bff )
−1
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B−1
ff Bfapa = pf − (I + B−1

ff ∆Bff )
−1B−1

ff ∆Bfapa + B−1
ff ∆Bff (I +

B−1
ff ∆Bff )

−1pf . It follows that

∥p̂∗

f − pf ∥ ≤ ∥(I + B−1
ff ∆Bff )

−1B−1
ff ∆Bfapa∥

+ ∥B−1
ff ∆Bff (I + B−1

ff ∆Bff )
−1pf ∥

≤ ∥(I + B−1
ff ∆Bff )

−1
∥∥B−1

ff ∥∥∆Bfa∥∥pa∥

+ ∥B−1
ff ∥∥∆Bff ∥∥(I + B−1

ff ∆Bff )
−1

∥∥pf ∥

= ∥(I + B−1
ff ∆Bff )

−1
∥∥B−1

ff ∥

∥∆Bfa∥∥pa∥

+ ∥∆Bff ∥∥pf ∥

.

Substituting ∥∆Bff ∥ ≤ ϵ and ∥∆Bfa∥ ≤ ϵ/2 as shown in Lemma6,
and ∥(I + B−1

ff ∆Bff )
−1

∥ ≤ 1/(1 − ∥B−1
ff ∥∥∆Bff ∥) by Golub

and Loan (1996, Lemma 2.3.3) into the above inequality gives

∥p̂∗

f −pf ∥ ≤
∥B−1

ff ∥( 1
2 ∥pa∥+∥pf ∥)ϵ

1−∥B−1
ff ∥ϵ

. Substituting ∥B−1
ff ∥ = 1/λmin(Bff )

completes the proof. �

References

Aspnes, J., Eren, T., Goldenberg, D. K., Morse, A. S., Whiteley, W., Yang, Y. R., et al.
(2006). A theory of network localization. IEEE Transactions onMobile Computing ,
12(5), 1663–1678.

Bishop, A. N. (2011). Stabilization of rigid formations with direction-only
constraints. In Proceedings of the 50th IEEE conference on decision and control and
European control conference (pp. 746–752). Orlando, FL, USA, December.

Bishop, A. N., Anderson, B. D. O., Fidan, B., Pathirana, P. N., & Mao, G. (2009).
Bearing-only localization using geometrically constrained optimization. IEEE
Transactions on Aerospace and Electronic Systems, 45(1), 308–320.

Diao, Y., Lin, Z., & Fu, M. (2014). A barycentric coordinate based distributed
localization algorithm for sensor networks. IEEE Transactions on Signal
Processing , 62(18), 4760–4771.

Eren, T. (2007). Using angle of arrival (bearing) information for localization in
robot networks. Turkish Journal of Electrical Engineering and Computer , 15(2),
169–186.

Eren, T. (2012). Formation shape control based on bearing rigidity. International
Journal of Control, 85(9), 1361–1379.

Golub, G. H., & Loan, C. F. V. (1996). Matrix computations (3rd ed). Johns Hopkins
University Press.

Henderson, H. V., & Searle, S. R. (1981). On deriving the inverse of a sum ofmatrices.
SIAM Review, 23(1), 53–60.

Khan, U. A., Kar, S., & Moura, J. M. F. (2009). Distributed sensor localization
in random environments using minimal number of anchor nodes. IEEE
Transactions on Signal Processing , 57(5), 2000–2016.

Lin, Z., Fu, M., & Diao, Y. (2015). Distributed self localization for relative position
sensing networks in 2D space. IEEE Transactions on Signal Processing , 63(4),
3751–3761.

Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization
techniques. Comupter Networks, 51, 2529–2553.

Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA.
In The 22nd annual joint conference of the IEEE computer and communications
(pp. 1734–1743).
Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of
agentswith switching topology and time-delays. IEEE Transactions on Automatic
Control, 49(9), 1520–1533.

Piovan, G., Shames, I., Fidan, B., Bullo, F., & Anderson, B. D. O. (2013). On frame
and orientation localization for relative sensing networks. Automatica, 49,
206–213.

Shames, I., Bishop, A. N., & Anderson, B. D. O. (2013). Analysis of noisy
bearing-only network localization. IEEE Transactions on Automatic Control, 58,
247–252.

Zelazo, D., Franchi, A., & Giordano, P. R. (2014). Rigidity theory in SE(2) for unscaled
relative position estimation using only bearing measurements. In Proceedings
of the 2014 European control conference (pp. 2703–2708), Strasbourgh, France,
June.

Zhao, S., & Zelazo, D. (2015a). Bearing rigidity and almost global bearing-only
formation stabilization. IEEE Transactions on Automatic Control, (99), 1–1 (Early
Access).

Zhao, S., & Zelazo, D. (2015b). Bearing-based distributed control and estimation
in multi-agent systems. In Proceedings of the 2015 European control conference
(pp. 2207–2212). Linz, Austria, July.

Zhao, S., & Zelazo, D. (2015c). Bearing-based formationmaneuvering. In Proceedings
of the 2015 IEEE multi-conference on systems and control (pp. 658–663). Sydney,
Australia, September.

Zhao, S., & Zelazo, D. (2015d). Translational and scaling formationmaneuver control
via a bearing-based approach. IEEE Transactions on Control of Network Systems,
(99), 1–1 (Early Access).

Zhao, S., & Zelazo, D. 2015e. Bearing-based formation stabilization with directed
interaction topologies. In Proceedings of the 54th IEEE Conference on Decision and
Control (pp. 6115–6120). Osaka, Japan, December.

Zhong, J., Lin, Z., Chen, Z., & Xu, W. (2014). Cooperative localization using angle-of-
arrival information. In Proceedings of the 11th IEEE international conference on
control & automation (pp. 19–24). June.

Zhu, G., & Hu, J. (2014). A distributed continuous-time algorithm for network
localization using angle-of-arrival information. Automatica, 50, 53–63.

Shiyu Zhao is a postdoctoral research associate in the
Department of Mechanical Engineering at the University
of California, Riverside. He received his B.Eng. (06) and
M.Eng. (09) degrees fromBeijing University of Aeronautics
and Astronautics. He got his Ph.D. in Electrical Engineering
from National University of Singapore in 2014. From 2014
to 2015, he was a postdoctoral research associate in the
Faculty of Aerospace Engineering at the Technion - Israel
Institute of Technology. His research interests lie in control
theory and dynamical networks.

Daniel Zelazo is an Assistant Professor of Aerospace Engi-
neering at the Technion - Israel Institute of Technology. He
received his B.Sc. (99) andM.Eng. (01) degrees in Electrical
Engineering from the Massachusetts Institute of Technol-
ogy. In 2009, he completed his Ph.D. from the University of
Washington in Aeronautics and Astronautics. From 2010
to 2012he served as a post-doctoral research associate and
lecturer at the Institute for Systems Theory & Automatic
Control in the University of Stuttgart. His research inter-
ests include topics related to multi-agent systems, opti-
mization, and graph theory.

http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref1
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref3
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref4
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref5
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref6
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref7
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref8
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref9
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref10
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref11
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref13
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref14
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref15
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref17
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref20
http://refhub.elsevier.com/S0005-1098(16)30089-9/sbref23

	Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions
	Introduction
	Bearing-based network localization
	Problem statement
	Reformulation as a least-squares problem

	The bearing Laplacian matrix
	Analysis of network localizability
	Distributed network localization protocols
	Sensitivity analysis
	Simulation examples

	Conclusions
	Preliminaries to bearing rigidity theory
	Proof of Lemma 5
	Proof of Theorem 6
	References


